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Abstract —A two-dimensional field simutator for microwave circuit mod-

eling is described. It incorporates a number of novel concepts and ad-

vanced transmission line matrix (TLM) procedures recently developed at

the University of Ottawa. In particular, a discrete Green’s function concept

baaed on Johns’s time-domain diakoptics has been reafized, providing

unpreeedented processing power through modularization of large stmc-

tores at the field level, simulation of wide-bmsd matched loads or absorbing

watls, modefing of frequency-dispersive boundaries in the time domain, and

large-scale numencaf preprocessing of passive stmctares. Nonlinear field

modeling concepts have afso been implemented in the TLM field simula-

tor. It can analyze two-dimensionaf circuits of arbitrary geomeby contain-

ing both linear and nonlinear media. The circuit topology is inpnt graphi-

cally. Both time-dornafh and frequency-domain responses ems be computed

and displayed. The capabifbies and limitations of the simulator are dis-

cussed and severaf microstrip and waveguide components are modeled to

demonstrate its important features.

I. INTRODUCTION

T HE TRANSMISSION line matrix (TLM) method was

invented and pioneered by Johns and. Beurle [1]. Ex-

tensive lists of references on this subject can be found in

two review papers [2] and [3] and in a book chapter on

TLM [4] by Hoefer. The powerful and versatile TLM

algorithm is suitable for microwave and millimeter-wave

circuit simulation, especially when the circuit geometry is

highly irregular. The most tedious and error-prone part of

a TLM simulation is usually the preparation of an input

file which specifies the geometry, dielectric properties,

excitation and output features. We have therefore devel-

oped a two-dimensional TLM field simulator which incor-

porates software for defining the layout of the circuit

graphically on the screen, locating the input and output

points, and specifying the desired excitation function in

analytical or digital form. The simulator can be used in

two different ways: It can compute and display the time-

domain response of a circuit to an arbitrary waveform, or

it can compute the impulse response of a circuit and

extract its complex S parameters (magnitude and phase)
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in the frequency domain via Fourier transform. In all

cases, the spectrum of input and output signals can be

displayed. Both linear and nonlinear field analyses can be

performed, and transient as well as steady-state behavior

can be studied directly on the screen.

To realize these capabilities, a number of advanced

TLM procedures have been developed, including a wide-

band absorbing boundary condition for non-TEM simula-

tion using a numerical Green’s function derived from

Johns’s time-domain diakoptics [5], matched impulsive

voltage sources, a numerical procedure for the separation

of incident and reflected fields in S-parameter computa-

tions, and nonlinear TLM nodes.

In this paper, these features will be described, and some

typical simulation results will be presented to demonstrate

the versatility and accuracy of the TLM field simulator. A

three-dimensional simulator is presently being developed

which employs the same advanced procedures for parame-

ter extraction as the two-dimensional version but over-

comes the limitations of two-dimensional modeling.

II. LINEAR AND NONLINEAR TLM

FIELD MODEILING

A. Linear Field Modeling

The TLM method is a numerical modeling tool for

electromagnetic fields in space and time. Unlike other

time-domain methods, which are based on the discreiiza-

tion of Maxwell’s or Hehnholtz’s time-dependent equa-

tions, the TLM method embodies Huygens’s principle in

discretized form. In a typical TLM simulation, the field

space is filled with a dense mesh of transmission lines.

Boundaries are modeled by appropriate reflection coeffi-

cients. The mesh is then excited by one or several voltage

impulses which spread throughout the structure and are

scattered at the nodes and boundaries. The analysis of this

process is conveniently described in terms of incident and

reflected impulses, Vi and V’, on tlie transmission lines at

the nodes of the network. The algorithm can be formulated

as an iterative sequence of the following operations:

[V];+l= [s]. [v];
[v]; +,= [C]. [v];+l

(1)

(2)
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where [S] is the impulse scattering matrix of the nodes,

and [C] is a connection matrix describing the topology of

the network. The subscripts k and k + 1 denote the dis-

crete time intervals at which the incident and the reflected

impulses in the branches of each node are computed.

Scattering events are separated in time by At duxing which

an impulse travels across the mesh parameter Al at the

speed of light.

Frequency-domain characteristics can be extracted from

the impulse response of the mesh via discrete or fast

Fourier transform. One single TLM analysis thus yields

complete information on S parameters, dispersion charac-

teristics, and field configuration over a wide frequency

range.

B. Modeling of Frequency Dispersive Boundaries

in the Time Domain

Modeling perfect electric and magnetic walls is straight-

forward in a TLM simulation: the impulses incident upon

such boundaries are simply reflected with the appropriate

real reflection coefficient. However, frequency dispersive

boundaries, such as wide-band absorbing walls in non-

TEM waveguides, lead to complex or dispersive reflection

coefficients. Dirac impulses incident upon such walls are

broadened and distorted. The TLM method cannot ac-

count for this effect since it is a discretized procedure.

Two possible solutions to this problem can be imple-

mented.

The first solution is to approximate the dispersive reflec-

tion coefficient by a nondispersive one. This gives accurate

results only at a single frequency for which the approxima-

tion is valid. Such a narrow-band solution does not fully

exploit the wide-band capability of the TLM approach,

but is easily implemented, requiring no additional process-

ing.

The second solution—implemented for the first time in

this simulator—is to represent the dispersive boundary by

a characteristic impulse response or numerical Green’s

function. A single impulse incident upon the boundary

causes not just one reflected impulse, but a whole stream

of impulses. To visualize this concept, consider the short-

circuited waveguide section in Fig. 1. The stub of width a

and length 1, within the operating range of the dominant

TEIO mode, has a frequency dispersive input reflection

coefficient 17i~,

~,~ = _ e-z@l (3)

where ~ is the phase constant of the TEIO mode. To

represent this reflection coefficient in the time domain, we

model the waveguide stub by a two-dimensional shunt

mesh as shown in Fig. 1. Note that all boundaries are

placed halfway between nodes to ensure synchroriism of

impulses throughout the TLM mesh. The branches pene-

trating through the input plane (also called removed

branches) are numbered 1 through M = N. An impulse

entering any one of these branches, let us say branch 1,

will result in a stream of impulses emerging from all M

branches. These impulse functions result from the scatter-

reference
pi

M=N

●
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s

Fig. 1. 2-D TLM mesh modeling a short-circuit waveguide stub. The

reference plane is a frequency dispersive impedance wall. One term of

its time signature, or Johns matrix, g(2,1, k), is shown.

ing at the nodes and boundaries of the structure, and can

be interpreted as a Green’s function in numerical form. All

removed branches are terminated in their own characteris-

tic impedance during this procedure so as to absorb the

emerging output streams.

Fig. 1 shows, as an example, the impulse output func-

tion at branch 2 resulting from a single unit impulse

entering branch 1 at t‘= k ‘At = O. In general terms, if we

call g( m, n, k) the output impulse function emerging at

the m th branch due to a unit excitation of the n th branch

at t= kA t,the complete numerical Green’s function for

the input plane of the waveguide stub can be written in

matrix form as follows:

(4)

g(l,l,K)--- -$l,n,K) -- -g(l,N,K)
/1 /!

/.
g}l+k)---- -g}l,n,<)--;- -g(l,Ntk) !

/$8
/

g(l:r,o) -:--g(l;nfo) -:--giti,o) ! ;

1, --- -l---: \-– –-,--
,,,
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,

. .:/-1.[. .g(m’fk; \>/. ..l. -

1

/1;/;{/ ;’1

m g(nif,o) -’ -- g(rn,<o) -:-- g(nifi,o) : :
(,
,, ;--- -;--; >;-- --:- .g(M;N,K)
,,, 1,
, >’-..{ --+ ..;- .@\fi,k)I

:.7
g(M,l,O) --- g(~,i,o) --- g(hi,fi,o)

— /4

Here N = M is the total ;umber of removed branches in

the reference plane, and K is the total number of itera-

tions. We propose the term Johns matrix for this charac-

teristic function in honour of the late P. B. Johns, pioneer

of TLM and time-domain diakoptics.

The general problem to be solved is the computation of

the component’s time response to arbitrary streams of

impulses entering its input branches. The input or excita-

tion function is the column vectot of voltage impulse

streams [ V’( n, k‘ )] incident on all branches 1 to N, while

the output function would be the resulting [V’(m, k)]
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emerging from the branches 1 to M. The latter is obtained

by a restricted convolution of the Johns matrix with the

input excitation function [5]:

[Vr(m,k)] = [@m,n,k’)]* [V’(mk’)]. (5)

The k th time sample of the output impulse function at the
m th branch is computed as follows:

u’(m, k) = ~ ~ g(mtn, k’)u’(n>k– k’). (6)
~=lkt=l)

This convolution algorithm has been implemented in the

TLM field simulator to model wide-band absorbing

boundaries for non-TEM simulations.

Obviously, this convolution process represents an exten-

sion of the scattering parameter concept into the time

dimension. It opens unprecedented possibilities for parti-

tioning of time-domain field problems and permits large-

scale numerical preprocessing of electromagnetic substruc-

tures for CAD.

C. Nonlinear Field Modeling

Nonlinear and time-dependent field parameters can be

modeled by updating the properties of the TLM mesh at

each iteration. For example, the characteristic admittances

of permittivit y and loss stubs determine the dielectric

constant and the conductivity of a medium through the

impulse scattering matrix [S’] of the nodes to which they

are attached. Since voltage and current are computed at all

nodes for each iteration, the stub admittances can be

recalculated and updated accordingly to simulate nonlin-

ear behavior. Similarly, the energy absorbed during a simu-

lation can be translated into a temperature change result-

ing in a change in c and u. The small time delay At

between cause and effect in the model is usually negligible

vi.+vis the period of the highest frequency component of

the fields.

In this paper, the nonlinear capability of the TLM field

simulator is used to model a varactor frequency multiplier

in combination with a calibrated voltage impulse source.

The various features of the simulator are based on these

concepts and will be described below.

111. IMPLEMENTATION OF FIELD

SIMULATION MODULES

A. Implementation of Absorbing Boundaries

Absorbing boundaries are among the most important

features in ~eld modeling. They play the same rol; as the

anechoic chamber in antenna work or the matched load in

transmission line and waveguide measurements. One can

distinguish between absorbing boundaries for TEM and

for non-TEM waves. The former can usually be repre-
sented by a nondispersive impedance, while the latter have

a frequency-dependent impedance.

1) TEM Absorbing Boundaries: In two-dimensional

plane wave TLM simulation, such as parallel-plate model-

ing of rnicrostrip, a wide-band absorbing load for the TEM

mode is modeled by terminating the individual mesh lines

1879

Frequencym GHz

Fig. 2. A comparison of the return loss characteristics of absorbing
waveguide boundaries obtained by two different methods. (a) Termina-

tion with ZW/ti and 1500 iterations. (b) Termination with 2. /fi
and 2500 iterations. (c) Termination with the Johns matrix.

(impedance .ZO) with the intrinsic impedance of the TLM

mesh, 20/~, where c.ff is the effective relative per-

rnittivity of the microstrip line. Note that this results in a

nonzero reflection coefficient for the individual impulses

traveling on the mesh lines toward the boundary, while the

total energy moving in the form of a traveling “mass

action” wave is completely absorbed by it. This is consis-

tent with Huygens’s principle, which stipulates that each

point of a moving wavefront emits secondary wavelets in

all directions, including the backward one.

2) Narrow-band Non-TEM Absorbing Boundaries: In

non-TEM wave simulations, such as waveguide modeling,

the mesh lines must be terminated with a dispersive wave

~
impedance ZO/ 2( c, – ( fc/f ) ) , where c, is the relative

permittivity of the medium filling the guide and ~C is the

cutoff frequency. This poses no problem in frequency-

domain analysis. However, when a waveguide component

is analyzed by impulsive excitation followed by Fourier

transform, termination in a singll~ impedance gives accu-

rate results only for the frequency at which that impedance

represents a match, as mentioned in the introduction. At

best, this approach leads to a narrow-band absorbing

condition, which is acceptable when the frequency range of

interest is only a fraction of an octave. The frequency

behavior of such a termination is shown in Fig. 2.

3) Generalized Wide-band Absorbing Boundaries: To

model truly wide-band absorbing boundaries over a large

frequency range and for all field types, the discrete Green’s

function, or Johns matrix approach described in subsec-

tion II-B must be implemented. In other words, we must

simulate and store the response to unit excitations of a

wide-band abscrrbing boundary, and then convolve its

Johns matrix with the impulses incident upon it during

subsequent TLM runs. For the purpose of modeling wide-

band matched waveguide loads with the two-dimensional

field simulator, we have employed two different ap-

proaches:

a) We have lmodeled a waveguide termination contain-

ing a lossy medium with gradually increasing loss

tangent. The length and loss profile of this termina-

tion depend upon the bandwidth over which reflec-



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 12, DECEMBER 19891880

b)

tions are to be kept small. To simulate good ab-

sorbing conditions over the operating band of a

standard rectangular waveguide, a length of about

4A at midband frequency is required. Touch-
sto~eTM CAD software has been used to optimize

the loss profile of the termination.

We have modeled a waveguide section so long that

reflections from the far end cannot return to the

input reference plane before the computation is

stopped. Thus, a section of 1000A1 yields a Johns

matrix with up to 2000 time samples.

Both these approaches yield almost identical results of

excellent quality. In Fig. 2 the performances of a narrow-

band and a wide-band waveguide termination are com-

pared. To obtain these characteristics, a uniform section of

WR28 waveguide, 50A1 long, was terminated at both ends

with simulated absorbing walls. After impulsive excitation

followed by several thousand iterations, the standing wave

ratio in the waveguide section was determined between 24

and 44 GHz by Fourier transform of the impulse response

of the system. The cascaded return loss of the opposing

absorbing boundaries, obtained as 2010g [( VSJVR – 1)/

(VSWR + l)], is shown in Fig. 2 over a frequency range

exceeding the recommended operating range of the guide,

26.5–40 GHz.

The narrow-band absorbing walls were modeled by ter-

minating the mesh lines at the boundary positions with

ZW/@, where ZW is the wave impedance at the midband

frequency of 33 GHz. Results are shown for two different

numbers of iterations. Reflections are small only between

32 and 34 GHz and depend on the number of iterations.

Since the Fourier transform of the time-domain results is

very sensitive to imperfect absorbing boundary conditions,

the accurate computation of S parameters is not possible

over a wide band of frequencies with this termination.

The wide-band absorbing walls were modeled by the

Johns matrix obtained as described in a) above. The supe-

rior performance of this model is immediately obvious. We

conclude that a single such boundary has a return loss of

better than – 35dB across the operating range of the guide.

The Johns matrix is a three-dimensional array G(M, N,

K) of size M X N X K, where M = N is the number of

mesh lines entering the simulated boundary, and K is the

total number of iterations. The Johns matrix has, however,
been reduced to a one-dimensional array G{ K ) by assum-

ing that the waveguide field is that of a propagating mode

with known field distribution. This implies that the absorb

ing termination is placed beyond the reach of higher order

modes, i.e., about a quarter wavelength away from the

nearest discontinuity. The resulting savings in memory

storage for the Johns matrix and in convolution time

(reduction by a factor M x N for both) are considerable.

This modal Johns matrix procedure to simulate the above

wide-band waveguide match takes about one order of

magnitude less time and memory than the full discretiza-

tion and simulation of a lossy termination.

source element ~ LOAD

absorbnl
magnetic wall

Fig. 3. Simulation of a matched voltage source in a parallel-plate wave-

guide with magnetic sidewalls,

B. Modeling of Calibrated Impulse Voltage Sources

For nonlinear field modeling it is necessary to have

sources which generate fields of known absolute amplitude
at any frequency. They can be realized in the form of

Huygens sources backed by an absorbing wall on the side

opposite to the load (see Fig. 3). The magnitude of the

voltage impulses, V;, launched from each source into its

four main branches must be ~ times the field ampli-

tude, VJe,h, of the desired traveling wave at the corre-

sponding transversal position in the mesh:

(7)

If the structure is a TEM waveguide (as in Fig. 3) all

sources have the same weight, and c~ff is the dielectric

constant in the TEM structure. If the structure is a rectan-

gular waveguide carrying the TEIO mode, the weight of the

sources is distributed in a sinusoidal

obtained as

fashion, and Ceff is

(8)

where ~, is the dielectric constant filling the waveguide,

and A and A. are the free-space and cutoff wavelengths,

respectively.

It is easily observed that a complicated waveform in-

jected into a non-TEM waveguide will be distorted due to

the frequency dispersive nature of the effective waveguide

permittivity. However, for the most practical case of sin-

gle-frequency excitation, the traveling wave amplitude can

be set using (7) and (8).

C. Extraction of S Parameters from the

TLM Impulse Response

The scattering parameters of n-ports are computed by

injecting an impulse wave into one of the ports, computing

the impulse response in all ports when they are terminated

in a wide-band absorbing load, and taking their Fourier

transform. Since S parameters are relative quantities, the

Fourier transform of the transmitted voltag~s, ~&, must

be divided by that of the incident voltage, V,nC. The latter

can easily be computed by modeling the input section of

the structure (source and input guide up to the input
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reference plane), replacing the n-port by a wide-band

absorbing boundary. The input reflection coefficient of the

n-port is obtained by computing the complex reflected

voltage, ~,efl, at the input plane as

mesh line

(9)
— magnetic wall

— absorbing wall

where ~tOt is the Fourier transformed impulse response of

the device in the input arm.

Thus, by capitalizing on our ability to model good

wide-band absorbing boundaries, we have greatly im-

proved the S-parameter extraction procedure. In the past,

Sll has been computed by finding the amplitudes and

positions of voltage maxima and minima in the input port,

as in a slotted line measurement. This required an input

line at least several wavelengths long, and a very fine

discretization was needed to compute the magnitude and

phase of Sll accurately.

The propagation constant of the input waveguide sec-

tion is also obtained from the incident field function ~inC.

IV. SIMULATION EXAMPLES

The following simulation examples demonstrate the im-

plementation and performance of these new concepts and

procedures. We have modeled a microstrip Iowpass filter, a

microstrip varactor multiplier, and an iris-coupled wave-

guide bandpass filter, and compared the results with other

methods.

A. Modeling of a Microstrip Low-Pass Filter

In commercial CAD software, microstrip lines and dis-

continuities are modeled by empirical expressions for their

effective permittivit y and characteristic impedance. These

expressions are quite accurate and take frequency disper-

sion of the quasi-TEM mode into account.

To model such circuits in the time domain with our

two-dimensional field simulator, we must first define a

parallel-plate equivalent model with nondispersive effec-

tive perrnittivity. It has been shown by Menzel and Wolff

[6] that such an approximation gives quite good results at

relatively low frequencies, even for discontinuities such as

impedance steps and T junctions. This parallel-plate model

can then be discretized and analyzed with the TLM method.

The effective width of that model for a straight mi-

crostrip line section can be computed using the formulas

given by Harnmerstad and Jensen [7] or similar formulas.

The effective dielectric constant of the line is simulated by

permittivity stubs attached to the TLM nodes inside the

model. The normalized characteristic admittance of the

stubs is y.= 4(c.ff – 1).
Fig. 4 shows the topology of the parallel-plate model of

a microstrip low-pass filter discretized for TLM simula-

tion, as defined on the screen of the simulator. A unit

matched impulse source is implemented at thb left extrem-

ity, and an absorbing wall terminates the output port. Fig.

5 compares the magnitude and phase of the S parameters

of the low-pass filter as obtained with the simulator and

0 input
0 output

Fig. 4. The equivalent 2-D TLM model (loading stubs are not shown)

of a rnicrostnp low-pass filter ((, = 9.60, Ceff = 8.22, Al = 1 mm).
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Fig. 5. A comparison of microstrip low-pass filter characteristics ob-

tained by using Touchstone and the TLM method. (a) Magnitude of

~1 and S1l. (b) Phase of S21 and S1l.

with Touchstone. Note the excellent agreement up to about

4 GHz. At higher frequencies, dispersion effects, which are

included in Touchstone but not in the 2-D TLM model,

lead to disagreement. Only a three-dimensional TLM anal-

ysis can properly model the dispersive microstrip behavior.

B. Modeling of a Microstrip Varactor Multiplier

To demonstrate the capability of TLM to model nonlin-

ear problems, we have simulated a simple frequency multi-

plier featuring a. varactor diode in a parallel-plate wave-

guide (microstrip model).

The diode is represented by a voltage-dependent capac-

itY w~ck in turn, appears as a subsection of the mi-
crostrip model with a voltage-dependent permittivity such

that the capacity of the subsection is equal to that of the

varactor. The area of the nonlinear subsection is the same

as that of a real packaged diode, and it is considered small

compared with the shortest wavelength of interest in the
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Fig. 6. The output waveform of a varactor multiplier and its outpul
spectrum, simulated by TLM, at Vb,,, = 0.2 V and V~,,h having ~
amplitude of 1 V.

simulation. Nonlinear behavior is modeled by updating at

each iteration the characteristic stub admittance yO in the

subsection as a function of the instantaneous voltage at a

node in the center of the subsection [8]. It is given by

[

cl” + Cdu +- Cp
yo=4

Ca
–1

1
(lo)

where

C,,, = voltage-dependent junction capacitance

Jb

‘F---v(t)

~0 – ‘b~as

CJO= zero bias capacitance of the diode,

Cdu = voltage-dependent diffusion capacitance of

the diode

= ‘3.ZlZXIO-18~40XU(f)+ ‘bias,

CP = package capacitance,

CU = capacitance of the diode subsection when

filled with (eff of the microstrip,

on= built-in potential.

+~1 +~~2 +4J2 -bh-J, +

Fig. 7. The geometry of a four-section Chebyshev iris-coupled bartdpass
filter.
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Fig. 8. A comparison of the return loss and insertion loss characteri-
stics, obtained by the lumped element model aud the TLM method, of a
waveguide-iris-coupled baudpass filter.

A sinusoidal voltage sampled at intervals of At was in-

jected using a calibrated source, as shown in Fig. 3.

Fig. 6 shows the steady-state waveform at the output

point and its Fourier transform (spectrum). The nonlinear

effects and the generation of harmonics are clearly visible.

This nonlinear 2-D TLM model has been used to design

varactor frequency multipliers and dividers [8]. Measured

results were in good agreement with the simulation results.

C. Modeling of an Iris-Coupled Rectangular

Waveguide Bandpass Filter

To simulate the reflection and transmission characteris-

tics of waveguide components, wide-band absorbing loads

must be implemented using the Johns matrix approach.

Fig. 7 shows the geometry of a four-section Chebyshev

iris-coupled waveguide bandpass filter with the following

characteristics:

center frequency = 32 GHz

bandwidth = 2 GHz

passband ripple= 0.01 dB (equivalent to 26dB return loss)

guide width = 7.112 mm.

The dimensions of the filter were calculated following

the design method given in [9]. They are

Do= 3.580 mm

D1 = 2.340 mm

Dz = 2.050 mm

11= 4.954 mm

Iz = 5.591 mm.



SO d a[.: TWO-DIMENSIONAL MSCROWAVE FIELD SIMDLATOR 1883

The return loss and transmission loss computed with the

Johns matrix approach are given in Fig. 8. For compari-

son, this bandpass falter was analyzed with Super-Com-

pactTM, accounting for the frequency-dependent suscep-

tance of the irises [10]. The results obtained with the two

methods are compared in Fig, 8. They agree well.

V. CONCLUSION

A user-friendly two-dimensional field simulator based

on the TLM method has been described. It allows the user

to enter the circuit topology and its dielectric characteris-

tics directly on the screen and to observe both the time and

frequency responses of the circuit as the simulation pro-

gresses in time. Complex S parameters for a wide fre-

quency band can be extracted from a single impulse re-

sponse computation. Both linear and nonlinear simulations

can be performed, and the time response of a structure to

art arbitrary excitation function can be modeled and dis-

played.

To achieve these capabilities, a number of innovative

concepts have been developed and implemented. The most

important of them is the representation in the time domain

of frequency dispersive boundaries by a discrete character-

istic time signature, or Johns matrix, which is analogous to

the Green’s function concept in classical electromagnetic

theory. This concept” has been implemented to model

wide-band matched terininations in waveguides and to

partition large structures into smaller substructures using

time-domain diakoptics. Other new features, such as

matched calibrated voltage sources, nonlinear TLM nodes,

and an S-parameter extraction algorithm, have also been

included in the simulator.

The present limitation to two dimensions restricts the

usefulness of the simulator for microstrip and waveguide

modeling. However, any truly two-dimensional problem of

arbitrary geometry can be modeled effectively and with a

great level of confidence, as the above examples indicate.

The errors inherent in TLM modeling are determined

essentially by the TLM mesh size, which in turn is limited

by the memory and, spked of the computer used. The

algorithm itself is unconditionally stable and is guaranteed

to converge. The convolution process in the Johns matrix

approach does not introduce any significant deviation from

traditional TLM modem results (less than 10 ‘5).

The importance of this simulator resides in the demon-

stration and implementation of new concepts which open

unprecedented possibilities for efficient time-domain mod-

ekng of large and complicated structures. We are now

working on a three-dimensional field simulator which will

incorporate these advanced features, for the modeling of

MMIC and EMI/EMC problems.
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